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Abstract 

Cell-based fluorescence imaging assays are heterogeneous requiring collection of 

a large number of images for detailed quantitative analysis. Complexities arise as a result 

of variation in spatial non uniformity, shape, overlapping compartments, and scale. A 

new technique and methodology has been developed and tested for delineating sub- 

cellular morphology and partitioning overlapping compartments at multiple scales. This 

system is packaged as an integrated software platform for quantifying images that are 

obtained through fluorescence microscopy. Proposed methods are model-based, 

leveraging inherent geometric shape properties of sub-cellular compartments and 

corresponding protein localization. From the morphological perspective, convexity 

constraint is imposed to delineate, partition and group nuclear compartments. From the 

protein localization perspective, radial symmetry is imposed to localize punctuate protein 

events at sub-micron resolution. This technique has been tested against two classes of 

punctuate protein events centrosomes and foci. This technique has been tested against 

images that were generated to study centrosome abnormalities in breast cancer cells and 

DNA double strand breaks in human epithelial cells.  
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Chapter 1: Introduction 

Response of tissues and biological material to various stimuli usually requires 

collecting and analyzing large samples of data for each experimental variable e.g., tissue 

type, dosage, type of stimuli and concentration. The response can be multi spectral and 

multi dimensional and can be imaged used different microscopic techniques. Quantitative 

analysis of these responses is a necessary step towards visualization of large co-

localization studies. The sub-cellular location of the protein expression is an important 

property that provides the context in which the protein carries out its function. Protein 

expression may be diffuse or punctuate as shown in figure 1. When the protein 

expression is diffuse the average value of the signal within a particular context is 

measured. When the protein expression is punctuate additional step is needed within the 

specific context for quantitative assessment. This work encompasses a complete 

methodology and quantitative assessment of co-localization studies in cell cultured 

assays. This work has been developed for studying quantitative assessment of protein 

localization in a wider spectrum of co-localization studies that has a variety of image 

signature, scale and complexities. The complexities are addressed using approaches that 

leverage the inherent geometry of the quantity that is measured. 
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  (a)     (b) 

Fig 1: Protein expression: (a) Diffuse (b) Punctate 

Fluorescence microscopy is a widely used imaging technique for cell cultured 

assays. Analyzing large sets of data for detailed quantitative analysis visually is a 

cumbersome process and therefore there is a need to automate the process. Automating 

the analysis offers another advantage that the assessment is objective than subjective. 

This technique has been tested against studying centrosomal abnormalities (CA) and 

analyzing foci associated with DNA double strand breaks and it can be extended to other 

phenotypic studies.  
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Centrosomes are major microtubular organizing center in an animal cell. It 

comprises of two orthogonally arranged centrioles surrounded by peri centriolar material. 

They play a vital role during cell division. During DNA synthesis phase of a cell cycle 

centrosome replicates itself. The replicated centrosomes separate and nucleate a bipolar 

spindle that equally contracts and segregates the replicated information into daughter 

cells during the mitosis phase.  

 

Fig 2. Cell Cycle 

One facet of centrosomal abnormality (CA) refers to the presence of more than 

two centrosomes in a cell which leads to abnormal cell division. As CA is a rare event a 

large number of data needs to be collected for each experimental variable for an objective 
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result. Complexities arise due to non uniform staining, overlapping nuclear regions, 

touching centrioles and scale of the nuclear regions.  

In the proposed system complexities are addressed using a model based approach 

which uses inherent geometric features of the sub-cellular nuclear compartments and 

punctuate protein events for quantitative assessment. The geometric features take into 

account the convexity features of the nuclear compartments and radial symmetry of the 

protein events. Nuclear segmentation is performed by higher level geometric analysis of 

edge fragments which are obtained by differential operators. In cell cultured assays 

imaged for fluorescence microscopy some nuclei are isolated and some nuclei are 

clumped. The strategy is to delineate isolated nuclei first and then to decompose clumped 

nuclei subjected based on iterative decomposition. The given non-convex blob is 

partitioned into optimum convex blobs by iterative decomposition based on constraint 

stratifying network. The constraints ensure that the computational cost is minimum and 

the optimum partition of the configuration is obtained which represents the sub-cellular 

compartments more accurately. 

Protein localization is performed by iterative voting[13], which are kernel based 

and the topography favors radial symmetry. The method implemented here falls into the 

category of iterative techniques which are adaptive to geometric perturbation and 

typically produce more stable results. This method shares several attributes with tensor-

based voting, but it differs in that it is scalar and iterative. Voting along the gradient 

direction provides a hypothesis of saliency which is very coarse, updating and reorienting 

the kernel every iteration enables and edge location spatial saliency can be inferred. The 

kernel provides an approximate centre of mass that is coarse initially. However, it is 
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updated and refined at every iteration to collapse the object to its center of mass which is 

picked up by a voting threshold.  It is robust with respect to variations in scale and 

intensity. 
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Chapter 2:  Previous Work 

The difficulties in localization of subcellular compartments are often due 

to variations in scale, noise, and topology.  Other complexities originate from missing 

data and perceptual boundaries that lead to diffusion and dispersion of the spatial 

grouping in the object space. Techniques for extraction of nuclear compartments vary 

from, global thresholding or adaptive (localized) thresholding followed by watershed 

method [11] for separating adjacent regions, curve evolution or shape regularization of 

sub-cellular compartments [4,5,12] to geometric techniques using nonlinear 

diffusion[1,12] . Techniques in radial symmetries, as evident by protein configuration, 

can be classified into three different categories: (1) point operations leading to dense 

output, (2) clustering based on parameterized shape models or voting schemes, and (3) 

iterative techniques.  

Point operations are usually a series of cascade filters that are tuned for 

radial symmetries. These techniques use image gradient magnitudes and orientations to 

infer the center of mass for regions of interest [6,7,10].  Parametric clustering techniques 

are often based on a variant of the Hough transform, circle or ellipse finders.  These 

techniques produce loci of points corresponding to the parametric models of well-known 

geometries.  These point distributions are then emerged, and model parameters are 

refined. Non-parametric clustering techniques operate along the gradient direction to 

search for radial symmetry, using either line- or area-based search. Line-based search is 

also known as the spoke filter, where the frequency of occurrence of points normal to the 

edge direction is aggregated.  In contrast, area-based voting accumulates votes in a small 
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neighborhood along the gradient direction. Examples of iterative methods include the 

watershed method and the regularized centroid transform (RCT)[12], which transport 

boundary points to the local center of mass iteratively. These can be classified as curve-

based voting since the voting path is not along a straight line but along a minimum 

energy path. Voting paths can be easily distorted by noise, local structures, and other 

singularities in the image, and may lead to over-segmentation. Thus, the problem is often 

regularized at different levels through either non-linear diffusion of random noise, non-

linear diffusion of speckle noise, or enforcing smoothness of the path leading each point 

on the surface to its local centroid. Parametric techniques tend to be more robust as long 

as the geometric model captures pertinent shape features at a specific scale, e.g., Hough 

transform. Iterative methods, such as watershed, regularized centroid transform, and 

geometric voting, produce superior results because they compensate for larger variation 

of shape features. 

The first two categories of radial symmetry detection can be summarized 

as follows. Interest-point operators are fast and well-suited for detecting small features 

for higher levels of interpretation and manipulation. Parametric voting techniques are 

potentially memory intensive, depending upon the dimensionality of the parameter space, 

and remain sensitive to small deviations from the underlying geometric model.  Line- and 

area-based voting produces a voting space that is diffuse and subject to further analysis. 
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Chapter 3: Segmentation  

Cellular compartments are stained to be identified in a 2D cell cultured assays 

imaged for fluorescence microscopy. The flourophore for nuclear stain in a fluorescence 

microscopy responds to a particular wavelength of light and thus illuminating the sample 

for a particular wavelength. This illumination is imaged as the nuclear compartments for 

subsequent analysis.  

The nuclear compartments that are imaged are sometimes isolated and are 

sometimes clumped. The strategy for delineating nuclear regions is to extract the isolated 

nuclear compartments first and to apply additional geometric constraints for clumped 

nuclear regions. Though the image signature might suggest that a simple thresholding 

based approach could delineate the sub cellular compartments, the variations in shapes, 

non uniform staining and imaging artifacts demands a more robust and localized strategy. 

The localized strategy is an edge based approach with a constraint satisfaction network 

based on geometry of the compartments for delineation. The edges are obtained from a 

Laplacian operator; the edge information is combined with the gradient information to 

extract closed contours. These closed contours are subjected to convexity tests. If the 

convexity test fails then the contour is subjected to further steps for delineation through a 

constraint satisfying network. The steps are given as follows: 

3.1 Boundary extraction 

The boundary extraction is initiated from zero-crossings of the Laplacian 

operator. Let I(x,y) be a 2D image; the zero-crossing edge information is extracted by 

using a Laplacian operator which is a second derivative operator. 
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 This edge information is coupled with gradient information at the same scale; two 

thresholds of gradient high threshold and low threshold are used to filter the edge 

information. The zero crossing ensures that boundary is closed and continuous as 

compared to standard approach by canny edge detection. The threshold high and low 

ensures that spurious contours are eliminated. The edge information is linked from high 

to low thresholds to form a closed boundary. 

 

Fig 3. Original image 
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Fig 4. Zero crossings High Threshold gives discontinuous contours 

 

Fig 5. Zero Crossings Low Threshold 
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Fig 6. Zero crossing boundary extraction from high threshold to low threshold  

3.2 Convexity Test 

The contours extracted from the pervious step is subjected to convexity test to 

determine if the nuclear compartment is isolated or clumped which needs additional 

processing for delineation. The convexity test is performed by approximating the contour 

as a polygon and measuring the total turning angle around the polygon to determine the 

convexity. If the nuclear region is isolated the total angle measured for the approximated 

polygon is 360 degrees; for a clumped nuclear region the measured angle greater than 

360 degrees which indicated that additional steps are needed to delineate the contour 

which represents a clumped nuclei. 
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3.3 Grouping and Partitioning 

3.3.1 Grouping 

The contours which fail the convexity test as explained in section 4.2 is subjected 

to partitioning to obtained individual nuclear compartments. The partitioning algorithm is 

based on iterative decomposition and constraint satisfaction. The partitions are initiated 

from points of positive curvature maxima. The iterative decomposition ensures optimum 

number of nuclear compartments is obtained and constraint satisfaction ensures that 

computation cost is the least. The following constraints are used to minimize the 

computational cost 

A) Positive Curvature Constraint 

The positive curvature constraint ensures that the partition is initiated from the 

folds of the contours which are the ideal points for potential decomposition. The 

curvature of the contour is calculated by the formula 

      (1) 

The contour derivative is computed by convolving the contours information with 

derivative of Gaussian function. 

(B) Anti Parallel Constraint 

Anti parallel constraint ensures that the each pair of positive curvature point i.e., 

points of potential decomposition is anti parallel. The anti parallel constraint is asserted 

by computing tangent direction for each point in a small neighborhood. The anti parallel 
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constraint reduces the computational cost of the algorithm as it reduces the number of 

hypothesis for a possible partition. 

(C) Non Intersecting Constraint 

The non intersecting condition asserts that the partitions do not cross the boundary 

of the contour or hypothesized partitions. 

(D) Convexity Constraint 

Nuclear compartments are always convex and the convexity constraint ensures 

that partitions obtained from the iterative decomposition are convex. This constraint 

avoids incorrect segmentation.  

3.3.2 Partitioning 

Each set of clumped nuclei is partitioned by using the constraints mentioned in 

sections 3.3.1 (A) to (D). Each configuration has a cost function which is given by  

       (2) 

The optimum configuration is given by the least cost function as in equation 2 

satisfying all the constraints.  The decomposition algorithm is summarized in appendix A. 
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Chapter 4: Protein Localization 

The segmentation of the nuclear regions gives the context for measuring the 

punctuate protein events. Protein events in a cell cultured assay may be diffused or 

punctuate. If it is diffused then the value is averaged. If the protein events are punctuate 

then the protein events are isolated using an iterative voting technique. The strategy to 

localize the protein events is to locate the centre of mass of the protein events through 

iterative voting technique which favors radial symmetry. Voting long the gradient 

direction gives the hypothesis of saliency which is initially coarse. However, refining the 

kernel at each iteration spatial saliency can be inferred. The kernel provides a prior 

knowledge for an approximate location of center of mass, which is subsequently refined 

as the shape of the kernel becomes more focused, as shown in Figure 7. 

       

(a)    (b)   (c)      (d) 

Fig 7. Kernel Topography: (a)-(d) Kernel evolution to detect radial symmetries 

Let I(x, y) be a 2D image. Let α(x, y) be the voting direction at each image point, 

where  

α(x, y) = (cos (θ(x,y)), sin(θ(x,y))) 

for some angle θ(x,y) that varies with the image location. Let {rmin, rmax} be the 

radial range and ∆ be the angular range.  Let V(x,y; rmin, rmax, ∆ ) be the vote image, 

dependent on the radial and angular ranges and having the same dimensions as the 
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original image.  Let A(x,y; rmin, rmax, ∆ )  be the local voting area, defined at each image 

point (x,y) and dependent on the radial and angular ranges, defined by  

     (3) 

Finally, let K(x, y; σ, α, A) be a 2D Gaussian kernel with variance σ, masked by 

the local voting A(x,y; rmin, rmax, ∆ )  and oriented in the voting direction α(x,y). Figure 7, 

shows a subset of voting kernels that vary in topography, scale, and orientation. The 

voting algorithm projects the gradient information along the edges with an initial large 

spread function. At each step of iteration, the total kernel energy is more focused along a 

specific orientation corresponding to the local maximum of the voting landscape. This 

technique collapses edge information radially to a single point, which is close to center of 

mass of each distinct object.  

An example of the application of radial kernels to overlapping objects is shown in 

Figure 8 together with the intermediate results. The voting landscape corresponds to the 

spatial clustering that is initially diffuse and subsequently refined and focused into 

distinct islands. The iterative voting scheme is summarized in Appendix B 

       

(a)   (b)   (c)   (d)  



 16 

          

(e)   (f)  (g)   (h) 

Fig 8. Voting: (a) Synthetic image simulating three overlapping protein events (b) – (h) voting landscape at 

each iteration 
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Chapter 5: BioQuant 

The algorithms presented for extracting sub-cellular compartments and protein 

localization in chapters 3 and 4 has been packaged into a software package (BioQuant) 

which is used to quantify protein events in cell cultured assays. BioQuant is built to 

automatically quantify information and produce the result of the segmentation and 

protein localization in text files which could be used for further statistical analysis. In 

addition to computing the quantification, the software also extracts additional features 

like size of the protein events, the average intensity, gradient and neighborhood 

information which could be used in higher level analysis.  

The software is currently being used as a high throughput analysis tool to quantify 

protein information in various co-localization studies.  

5.1 Level of Detail 

A) Parameter setting and Experiment Configuration 

The software allows user to enter various experimental parameters to be stored for 

analysis later on. The software is designed with a greater flexibility in customizing the 

parameters needed for the algorithms. 

B) Modes of operation 

The software provides two major modes of operations 

1. Foreground mode or interactive mode 

2. Batch Mode 

In the foreground mode BioQuant can process one image at a time and a visual output is 

generated for the image that is processed. The main idea of using the software in this 
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mode is to fine tune the algorithmic parameters for a particular data that is being 

processed. In batch mode the software could be made to process one directory at a time, 

usually images in one directory corresponds to data collected under a same experimental 

group e.g. images collected under same treatment group. Batch mode is generally used to 

process a large volume of data.   

 

Fig 9. BioQuant: Parameter Configuration panel. 
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Fig 10: Bioquant: Single mode/ parameter setting panel. 
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Fig 11. BioQuant: Batch Mode Panel 

                

(a)     (b) 

Figure 12. BioQuant Parameter: (a)-(b) Algorithmic Parameter Panels 
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Chapter 6: Experimental Results and Analysis 

The system developed here was used in two different studies. 

1) Experiment  to quantify centrosomal abnormality in breast cancer cells 

2) Experiment to quantify and measure protein events in DNA double strand 

breaks in human epithelial cells subjected to radiation. 

6.1 Experiment to study centrosomal abnormality in breast cancer cells 

An experiment was conducted to study centrosomal abnormality in breast cancer 

cells. CA is a rare event which occurs in 2% of normal tissue and 80% of breast cancer 

cell. Therefore a large sample of data was used to characterize the CA. The cells were 

treated with different treatment groups and were imaged using fluorescence microscopy. 

A total of 196 images were processed. The results from the software system, BioQuant 

were then compared with manual quantification of centrosomal abnormality.  

The segmentation and protein localization results are shown in Figures 13 to 19. 

For each image the segmentation result is displayed in green and protein localization is 

cyan dots. It should be noted that in certain cases e.g., in Figure 17; compartments 10 and 

11 has no decay in intensities between the two touching nuclear regions, well known 

approaches like watershed method could fail in such cases.  

The accuracy of the system in localizing protein events are shown through Figure 

13.  The centrosomal abnormalities are correctly characterized in cells 14 and 842 and are 

assigned to appropriate nuclear regions due to correct segmentation of the sub-cellular 

compartments.  
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A comparison between manual quantification and automated quantification is 

shown in Figure 18 and Figure 19. Correlation was computed between the manual and 

automated quantification and between two investigators. The two facets compared were 

assigning centrosomes to nuclear regions and counting abnormal centrosomes in a nuclei. 

From figures 20 and 21 it can be inferred that the manual quantification is subjective to 

the investigators and the correlation between investigator A and investigator B in both 

assigning cells to nuclear regions and counting abnormal centrosomes is not ideal. 

Comparison between manual (average values from two investigators) and automated 

quantification shows a tighter correlation and the analysis by using an automated 

approach is no longer subjective but is objective as the algorithms are based on inherent 

geometries of the measurements being made. Also, it can be noted that the error rate is 

very marginal and is acceptable measure for high throughput analysis.  

Figure 22 shows an example of a failure by using watershed approach for image 

segmentation in portion of image where the nuclear regions are adjacent to each other. A 

portion of the image is taken from the image presented in figures 15 and 17, where there 

are touching nuclear compartments. Watershed approach is intensity based spatial 

clustering approach and does not use inherent geometry of sub cellular compartments for 

delineation. It often leads to fragmentation and is sensitive to parameter selection. 

However by using the geometric based iterative decomposition approach this problem is 

overcome and the correct delineation of these sub-cellular compartments is shown in 

figure 15 represented by nuclei id 59, nuclei id 61; and figure 17 represented by nuclei id 

10, nuclei id 11. 
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(a)      (b) 

   

  (c)      (d) 

Fig 13. Segmentation and Protein Localization result: (a) Original Image Cellular morphology (b) Protein 

Events (c)-(d) Result of segmentation and protein localization 
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(a)      (b) 

  

(c)      (d) 

Fig 14. Segmentation and Protein Localization result: (a) Original Image Cellular morphology (b) Protein 

Events (c)-(d) Result of segmentation and protein localization 
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(a)      (b) 

   

(c)      (d) 

Fig 15. Segmentation and Protein Localization result: (a) Original Image Cellular morphology (b) Protein 

Events (c)-(d) Result of segmentation and protein localization 
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(a)      (b) 

  

(c)      (d) 

 

Fig 16. Segmentation and Protein Localization result: (a) Original Image Cellular morphology (b) 

Protein Events (c)-(d) Result of segmentation and protein localization 



 27 

   

(a)      (b) 

 

   

(c)      (d) 

Fig 17. Segmentation and Protein Localization result: (a) Original Image Cellular morphology (b) Protein 

Events (c)-(d) Result of segmentation and protein localization 
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Fig 18. Results Comparison: Manual quantification Vs automated quantification of centrosomal 

abnormality for treatment group A 
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Fig 19 Results Comparison: Manual quantification Vs automated quantification of centrosomal abnormality 

for treatment group C 
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(a) 
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     (b) 

Fig 20. Results Correlation: Correlation-assigning centrosomes to nuclei (a) Investigator A Vs Investigator 

B (b) Manual (Average of Investigator A Vs Investigator B). 
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          (a) 
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(b) 

Fig 21. Results Correlation: Correlation-detecting abnormal centrosomes (a) Investigator A Vs Investigator 

B (b) Manual (Average of Investigator A Vs Investigator B) 

 

 

 

 

 



 34 

    

(a)      (c) 

            

  (b)      (d) 

Fig 22. Watershed Segmentation: (a) – (b) Portion of Original image (c)- (d): Regions segmented by using 

watershed . Watershed relies on clear differential difference between neighboring objects and as a result in 

(d), two overlapping nuclei are merged. However, two other nearby objects in the same image are 

seperated. The parameters selections for these two images were identical and they were chosen to balance 

the best results in both cases. 
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6.2 DNA double strand break in human epithelial cells 

This technique has been applied to foci associated with DNA double-strand 

breaks (DSBs) in human epithelial cells exposed to high energy (1 GeV/amu) radiations. 

Such high energy heavy ions (HZE) are present in the galactic cosmic rays (GCR) and is 

a health concern for space travel.  Histone H2AX is phosphorylated in chromatin adjacent 

to DSBs and can be detected with specific antibodies as punctuated events known as foci. 

Cell culture slides were irradiated at 0 and 100 centigray of Fe ions at the NSRL facility 

at Brookhaven National Laboratory, incubated for repair and then stained for 

phosphorylated H2AX protein. A dataset comprising of 120 images at different time 

points were analyzed. An example is shown in Figures 23 and 24, and the kinetics of foci 

formation (repair)--post radiation--over the entire dataset is shown in Figure 25. 

Once events are localized, other features such as size and contrast are also 

computed for other analysis. Of particular interest is pattern of foci formation, which is 

computed through triangulation, and represented as an attributed graph, shown in Figure 

26. This pattern of foci formation is captured using delauany triangulation and could be 

used to higher level pattern analysis. 
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  (a)      (b) 

Fig 23. Segmentation and event localization: (a) original image and its corresponding punctate 

events of  γ-H2AX proteins; (b) detected events. 

 

   

 (a)      (b) 

Fig 24. Segmentation and event localization: (a) original image and its corresponding punctate 

events of  γ-H2AX proteins; (b) detected events. 
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Fig 25. Time Response: Average number of foci (punctate events) per nucleus as a function of time for 

exposed (solid line) versus control cell lines (dotted lines) indicate dynamics of repair mechanism for 

exposed cells. Approximately 7-8 images were collected at each time point. 
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  (a)      (b) 

Fig 26. Foci Pattern: Zoomed portion of image in figure 23 to show the pattern of localized events (a) 

Original image (b) Pattern of foci represented by delaunay triangulation. 
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Chapter 7: Conclusion and Future work 

The goal of the work presented in this thesis was to accurately segment nuclear 

compartments and to quantify protein events in cell cultured assays. The work addresses 

large variations in signatures of the sub-celluar compartments and protein events that 

occur in cell cultured assays and accurately quantifies the signals inspite of varying 

degrees of complexities.  

Segmentation of nuclear compartments provides the context for measuring the 

protein events. A novel approach for segmentation by leveraging geometric features of 

the sub-cellular compartments was presented. This algorithm provided a better 

segmentation results over well known segmentation approaches. An iterative voting 

technique is used to localize punctuate protein events which leverages the radial 

symmetry of punctuate protein events was implemented. It provides robust and accurate 

result over varying scales and intensities.   

The algorithms presented was used to quantify protein events in two studies  

1) Quantifying Centrosomal abnormality, 

2) Study mechanism of DNA double strand breaks in human epithelial 

cells 

The results discussed showed that the system can make robust and accurate 

measurement and proved to be a valuable tool for high throughput analysis. These 

algorithms can able to extend towards a large variety of phenotypic studies. 

The performance of the current system can be enhanced further by using dynamic 

programming in iterative decomposition. Currently, there is a time overhead in 
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calculating all possible hypotheses for a potential decomposition which has a higher order 

of magnitude in time complexity as the number of sub-cellular compartments to be 

delineated increases. This could be reduced by using dynamic programming approach 

where at each iteration an optimum partition could be extracted and the cost function 

encompassing the convexity could be propagated to get a globally optimum 

decomposition. 
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APPENDIX A 

Decomposition Algorithm 

1. Localize positive curvature maxima along the contour 

 

2. Set initial number of compartments n:= 2 

 

3. Construct a set of all valid configurations of compartments by connecting valid pairs of 

positive curvature maxima satisfying the anti parallel, nonintersecting and convexity 

constraints  

 

4. Evaluate cost of each configuration as defined by the convexity measure defined in 

Equation 2. 

 

5. Increment the compartment count n:=n+1 and repeat steps 3 and 4 until there is at least 

one configuration (e.g., a set of partitions where each partition is convex) 

 

6. Select the configuration with the least cost function 
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APPENDIX B 

Iterative Voting 

1. Initialize the parameters: Initialize rmin; rmax; ∆max, and a sequence ∆max = ∆N < ∆N-1 < 

… < ∆0 = 0. Set n := N, where N is the number of iterations, and let ∆n = ∆max. Also fix a 

low gradient threshold, ε and a kernel variance, σ, depending on the expected scale of 

salient features. 

 

2. Initialize the saliency feature image: Define the feature image F(x; y) to be the local 

external force at each pixel of the original image. The external force is often set to the 

gradient magnitude or maximum curvature depending upon the type of saliency grouping 

and the presence of local feature boundaries. 

 

3. Initialize the voting direction and magnitude: Compute the image gradient, and its 

magnitude, Define a pixel subset S := {(x; y) | magnitude of gradient > ε }. For each grid 

point (x; y) in S, define the voting direction to be 

 

4. Compute the votes: Reset the vote image V (x; y; rmin; rmax; ∆n) = 0 for all points (x; y). 

For each pixel (x; y) in S, update the vote image as follows:  
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where w = max(u) and h = max(v) are the maximum dimensions of the voting 

area. 

 

5. Update the voting direction: For each grid point (x; y) in S, revise the voting direction. 

Let 

 

Let dx = u
*
 - x; dy = v

*
 - x, and 

 

 

6. Refine the angular range: Let n := n - 1, and repeat steps 4-6 until n = 0. 

 

7. Determine the points of saliency: Define the centers of mass or completed boundaries 

by thresholding the vote image: 
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